A route to enantiopure RNA precursors from nearly racemic starting materials.

نویسندگان

  • Jason E Hein
  • Eric Tse
  • Donna G Blackmond
چکیده

The single-handedness of biological molecules is critical for molecular recognition and replication processes and would seem to be a prerequisite for the origin of life. A drawback of recently reported synthetic routes to RNA is the requirement for enantioenriched reactants, which fails to address the puzzle of how the single chirality of biological molecules arose. Here, we report the synthesis of highly enantioenriched RNA precursor molecules from racemic starting materials, with the molecular asymmetry derived solely from a small initial imbalance of the amino-acid enantiomers present in the reaction mixture. Acting as spectators to the main reaction chemistry, the amino acids orchestrate a sequence of physical and chemical amplification processes. The emergence of molecules of single chirality from complex, multi-component mixtures supports the robustness of this synthesis process under potential prebiotic conditions and provides a plausible explanation for the single-handedness of biological molecules before the emergence of self-replicating informational polymers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Crystallization-Induced Asymmetric Transformation using Racemic Phenyl Alanine Methyl Ester Derivatives as Versatile Precursors to Prepare Amino Acids

L-Tyrosine and L-Dopa are the precursors in the biological synthesis of amine neurotransmitters. On the other hand, phenylalanine as an aromatic amino acid (AAA) is a precursor in the synthesis of L-Tyrosine and L-Dopa. For some substrates such as amino acids, resolution by the formation of diastereomers offers an attractive alternative. Among different methods in this case, crystallization-ind...

متن کامل

Deracemization of a Racemic Allylic Sulfoxide Using Viedma Ripening

Despite the importance of enantiopure chiral sulfoxides, few methods exist that allow for their deracemization. Here, we show that an enantiopure sulfoxide can be produced from the corresponding racemate using Viedma ripening involving rearrangement-induced racemization. The suitable candidate for Viedma ripening was identified from a library of 24 chiral sulfoxides through X-ray structure dete...

متن کامل

S,S-1,2-Dicyclohexylethane-1,2-diol and its racemic compound: a striking exception to Wallach's rule.

The structures of enantiopure S,S-1,2-dicyclohexylethane-1,2-diol and its racemic compound (rac-S,S-1,2-dicyclohexylethane-1,2-diol) have been determined at 295 and 173 K. The crystals of the enantiopure material are more than 4% denser than the crystals of the racemic compound, but the melting points indicate that the crystals of the less dense racemic compound are considerably more stable tha...

متن کامل

Emergence of single-molecular chirality from achiral reactants

The synthesis of enantiopure molecules from achiral precursors without the need for pre-existing chirality is a major challenge associated with the origin of life. We here show that an enantiopure product can be obtained from achiral starting materials in a single organic reaction. An essential characteristic of this reaction is that the chiral product precipitates from the solution, introducin...

متن کامل

Access to enantiopure 4-substituted 1,5-aminoalcohols from phenylglycinol-derived δ-lactams: synthesis of Haliclona alkaloids.

LiNH2BH3-promoted reductive opening of 8-substituted phenylglycinol-derived oxazolopiperidone lactams leads to enantiopure 4-substituted-5-aminopentanols, which are used as starting building blocks in the synthesis of the Haliclona alkaloids haliclorensin C, haliclorensin, and halitulin (formal). The starting lactams are easily accessible by a cyclocondensation reaction of (R)-phenylglycinol wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature chemistry

دوره 3 9  شماره 

صفحات  -

تاریخ انتشار 2011